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Abstract
This note outlines a simple method for estimating the spread of the COVID 19 virus in the absence of data on test results for a
large, random sample of the population. It applies the method to the UK, and other countries, and finds that to match data
on daily new cases of the virus, the estimatedmodel favours high values for the number of people infected but asymptomatic.
That result is very sensitive to whether the transmission rate of the virus is di�erent for symptomatic and asymptomatic
cases, something about which there is significant uncertainty. This illustrates how di�icult it is to estimate the spread of the
virus until very large samples of the population can be tested.

1 introduction
There is significant uncertainty about the degree to which the novel coronavirus (COVID19) has spread and
infected people who show no obvious symptoms. This has very significant policy implications - Stock 2020
shows that di�erent policies aimed at controlling the virus can have very di�erent e�ects on the numbers who
become infected and show symptoms depending on the proportion of those who are asymptomatic. It is those
with symptoms who are at risk of death from the virus and so the relative size of the populations of symptomatic
to asymptomatic amongst the infected is of enormous significance to welfare, including mortality rates, and to
policy (Fauci, Lane, and Redfield 2020).

The degree of uncertainty about that asymptomatic rate is large enough to mean that neither 0.3 or 0.9
is outside the range of plausible values, though the implications of those two numbers are very di�erent. Li
et al. 2020 estimate that 86 per cent of all infectionswere undocumented prior to theWuhan travel shutdown (on
January 23, 2020). In contrast, estimates based on infections amongst passengers on the cruise ship Diamond
Princess put the proportion of asymptomatic (or near asymptomatic) cases at around 50 per cent. Manski and
Molinari 2020 report enormous ranges for the possible values of the infection rates in Illinois, New York and Italy.
As of April 6th 2020 these ranges are estimated as [0.001, 0.517], [0.008, 0.645], and [0.003, 0.510] respectively.

While large scale testing of a random sample of the population would greatly narrow the range of plausible
values for the asymptomatic proportion of the infected (Stock 2020), such testing seems some way o� in
most countries. In most countries, including the the USA and the UK, testing up to the end of April 2020 was
concentrated on those who display symptoms or are at high risk; it was certainly not random.

In this note we implement a simple version of the SIR (susceptible-infected-recovered) model to estimate
the asymptomatic rate from data on the non-random sample of those tested. We use data from the UK, where
relatively few of those showing no symptoms had been tested up to the end of April 2020, to provide highly
provisional estimates of the asymptomatic proportion of the infected. We find quite striking di�erences between
what the simple model suggests is the asymptomatic rate and the much lower estimates based on the limited
data of (near) random sampling.

We also apply the model to the US, Italy, Spain, France and Sweden. The results for those countries are
similar to the UK - the value of the asymptomatic rate that seems to best fit the data is very high; far higher than
is estimated based on the limited amount of results frommore widespread testing which went beyond those
who showed symptoms.
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We consider what might account for such di�erences and find that the degree to which the asymptomatic
spread the virus - and whether it is substantially lower than for the symptomatic - is of great significance. There
is limited evidence on this which makes it hard to assess the spread of the virus, creating great challenges for
policies on easing "lockdown"measures. If the spread of the virus is wide, and had been a factor in the observed
decline of new cases up to the end of April, an easing of restrictions poses fewer risk of a sharp upwards spike in
infections. However, the confidence interval for the estimated ratio of the numbers of infected with mild (or no)
symptoms to the numbers of symptomatic is quite wide.

2 The Model
We use a version of the SIRmodel which closely follows Stock 2020. At each point in time the population is made
up of three distinct groups: those who are currently infected (It ); those who are susceptible (St ) and those who
have recovered (R t ). We assume a constant population and that the death rate is low enough to mean that this
is reasonable. We also assume that some constant proportion (πa ) of those infected do not develop symptoms
– or that they are so mild as to count as asymptomatic. There is some evidence that the degree to which the
asymptomatic are infectious may be di�erent from those who have symptoms (Ferguson et al. 2020), but we
will initially assume that the transmission rates are the same for all those infected. We denote the population of
the symptomatic infected at time t by Ist and the asymptomatic as Iat such that It = Ist + Iat . The evolution of
St , It and R t in discrete time is given by the dynamic system:

∆St = −βt It−1
St−1
N

(1)

∆R t = γIt−1 (2)

∆It = βt It−1
St−1
N
− γIt−1, (3)

∆S is the change in the population of the susceptible; N is the total population, βt is the transmission rate
of the virus at a time t (the mean number of people an infectious person will infect per unit time) and γ is the
rate of recovery. The initial infection rate over the infectious period, the reproduction number, is defined as
R0 =

βt
γ . We assume that the infectious group It is made up of symptomatic and asymptomatic groups in fixed

proportions such that

Ist = (1 − πa )It (4)

and

Iat = πaIt . (5)

The number of new cases at time t (yt ) can be calculated as

yt = ∆It + γIt−1. (6)

New cases are the sum of the change in the number of outstanding cases plus the numbers recovered. The
number of new symptomatic cases (yst ) is

yst = (1 − πa ) (∆It + γIt−1) = (1 − πa )
(
βt It−1

St−1
N

)
. (7)

Wemake the key assumptions that: a large fraction of the symptomatic are tested; that a small proportion
of the asymptomatic are tested; and that the test is reliable. This would mean that the observable number of
those who test positive would closely track the quantity (yst ). The strategy that we pursue is to use the data
on the numbers of new cases who test positive for the virus and to assume that this closely follows the true

Dimdore-Miles et al. 2020 | 2



number of newly infectious symptomatic people. We then seek the values of the parameters of the model -
and in particular πa - that give a predicted yst that matches the data. The strategy is similar to that adopted in
the study by Lourenço et al. 2020 who estimated that a high proportion of the UK populationmay have been
infected even by early March 2020. But there are two important di�erences with the procedure we follow. First,
we use data on the numbers of those who test positive (in the UK and in other countries) as the variable we are
trying to match; the Gupta study used the number of deaths. There would seem to be significant ambiguity over
assignment of the cause of death to the virus, perhaps more than over whether a positive test is reliable or not.
Second, the study based on deaths looked at a short period when deaths were low and rising fast by early March.
We use data on tests up the end of April by which time nearly 500,000 had been tested in the UK and around
175,000 had tested positive (according to data from the O�ice of National Statistics).

To implement the estimation of the model we need to make assumptions about the transmission rate of the
virus βt and the recovery rate γ. The transmission rate will not have been constant because of policy measures
introduced to slow the spread of the infection. In the UK "lockdown", which began onMarch 23rd, has been strict
and social distancingwill likely have brought it down significantly. Similar policies were adopted at various times
in March 2020 in other countries. We assume a constant value of βt before the lockdown date (of β0), followed
by a gradual reduction in the βt value a�er this date to simulate the e�ect the measures have on transmission.
The initial value of β0 is derived from assumed values of the initial reproduction rate R0 and the recovery rate
γ, using the relation β0 = γR0. We try all values for an initial transmission rate ranging from 2.2 up to 3.9 at
intervals of 0.005. We try three values of the recovery rate implied by half lives of the period of infectiousness -
that is the number of days it takes for half an initial number of infected people to recover - of 4 days, 6 days (as
used by Stock 2020) and 8 days. The corresponding three values of γ are 0.159, 0.109 and 0.0833.

We assume that a�er the lockdown date there is a lag until the value of βt starts to change from β0. The lag is
between the lockdownmeasures starting and the impact on the numbers testing positive for the virus. That lag
reflects several distinct factors: it must include the lag in the impact on new infections, the lag before symptoms
show, the lag before testing the symptomatic and finally the lag before results are known and recorded in the
daily measure. We set the overall lag at 14 days, but also assess sensitivity of results to shorter lags. A�er this
lag, β decays exponentially towards a value of βL , the post lockdown asymptotic β . The time path for βt can be
expressed as

βt =

{
β0, if t ≤ t ∗

β0 − (β0 − βL) (1 − e−(t−t
∗)λ) if t > t ∗,

(8)

where t ∗ is the lockdown time plus the 14 day lag period and λ is the speed of adjustment in β a�er lockdown
measures begin to take e�ect. We assume that once the lockdown does begin to a�ect numbers testing positive
it quite quickly reaches its full e�ectiveness, bringing the transmission rate down so that half of its long run
impact on β comes through in 3 days, implying that λ = 0.231.

For given values of γ, β0 and λ we search for the values of the two free parameters - βL and πa - so as to
maximise the fit of the model. We chose those two free parameters to minimise the sum of squared deviations
between the daily data on the numbers of new positive tests for the virus and the model prediction of that
number (yst ). Theparameterswe fit are ameasure of howe�ective the lockdown is in bringingdown the infection
rate (measured by howmuch lower βL is relative to β0) and the ratio of those infected with no symptoms to the
total population of the infected (πa ).

3 Sensitivity to key assumptions and calibration
Before showing results we stress that our model relies on a number of key assumptions.

We assume that those who have been tested up to the end of April 2020 are overwhelmingly those with
symptoms and that a very high proportion of those who have significant symptoms are tested. Neither assump-
tion is an exact approximation to reality in the UK or elsewhere for a number of reasons. In the UK there has
not been an entirely consistent policy on testing in hospitals - some test those who present symptoms, others
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with su�icient resources have donemore widespread testing of patients regardless of symptoms. But, overall,
relatively few in the UKwith no symptoms have been tested up to the end of April 2020, and a high proportion of
those with symptoms serious enough to be admitted to hospitals have been tested.

For the UK the model is initialised on data from the 31st of January, the date on which the first non zero
value of positive test cases is recorded. At this time, testing was only applied to those who had travelled to
certain regions of China and presented with symptoms and therefore data in the first week or somay not be fully
representative of all symptomatic cases. Nevertheless, the criteria for testing was quickly widened. The data we
have on recorded positive tests is clearly imperfect but it is the closest available to the model variable yst .

We rely on estimates of R0 and of γ to generate a value for β0. There is considerable uncertainty about both.
At the lower end of the ranges of values used in simulations are those chosen by Ferguson et al. 2020, who
assume a value of 2.4, and Lourenço et al. 2020 who take figures centred around 2.25 or 2.75. Stock 2020, who
draws on estimates using data fromWuhan, uses a much higher figure for simulations with a pre-shutdown
value for R0 of 3.8. The range of estimates of R0 from several studies is between 2.2 and as high as 3.9. A team at
the London School of Hygiene and Tropical Medicine found 11 published estimates of R0 for Covid-19, which
averaged 2.68 with a standard deviation of 0.57 (see Paul Taylor, London Review of Books, May 2020, vol 42, no
9). The range we use for simulations is 2.2 to 3.9 - values outside this range gave a poor fit to the data for all
countries we analysed for any values of the other parameters. For our estimate of γ we assume the half life of
the infection as x days and therefore that γ satisfies the equation (1 − γ)x = 0.5. We take x as 4, 6 or 8 days - a
range which encompasses those used in several studies.

As noted above we assume that once lockdown begins beta is reduced so that it declines asymptotically
towards a value that would then bemaintained as long as the lockdown remains in place (βL in our equations).
Our choice of the speed with which beta declines towards its steady-state value, a�er the initial lag, is such that
the transition is fairly rapid, corresponding to a half life of 3 days (λ = 0.231).

A final key assumption is that new symptomatic infections are generated from the total current population
of the infected (symptomatic and asymptomatic) and that the degree of infectiousness is the same across the
infected. The number of new cases of those with symptoms will therefore be higher, for a given number of
existing infected people with symptoms, the higher is the asymptomatic rate (πa ). It is also higher the larger β is.
It is this dependence which allows us to use data on the numbers of newly tested infected with symptoms to
infer something about πa and also to learn about the impact of policy (the lockdown) from the change in the
trajectory of new cases a�er it came into e�ect.

The data we try to fit is the number of new infections recorded where we assume that all such new cases
have some symptoms. Testing of people with no symptoms has (up to late April 2020) been relatively small
scale in the countries we analyse and to a large extent limited to those at high risk. There has been no very
large scale testing of a reliably random sample of the population. We use a grid search to find the values of
the two unknown and free parameters (βL and πa ) to minimise the root mean squared deviation between the
observations and (yst ), given the choice of other parameters.

4 Results
Figure 1 shows the data on new cases of those testing positive for the virus in the UK. The data start on January
31st. The data is from the O�ice for National Statistics. (The spike in reported new cases on 11/04/2020 coincides
with an expansion in testing capacity).

Figure 2 shows the best fit of themodel when we set the half life of the infection to 6 days (γ=0.109). The best
fit for this value of γ was when R0 = 2.5 and βL and πa are 0.1928 and 0.996 respectively. These values imply
that the transmission rate started to turn down sharply by the end of first week of April, some 2 weeks a�er the
lockdown began. The value for πa is very high - implying that there are around 250 people who have had the
infection with no symptoms (or very mild symptoms) for every person infected with symptoms. If that were true
then by April 20th - by which time around 120,000 had tested positive for the virus (and the great majority of
whom had shown symptoms) close to 45% of the UK population might have had the virus.

Figure 3 shows the root mean square error of the model for all combinations of parameters πa and βL . The
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Figure 1. Time series of daily new positive COVID19 cases recorded in the UK between January 31st and April 30th 2020.

shape of this measure of fit illustrates several things. The dark shaded area on the far right of the figure (highest
RMS errors) suggest the lockdown had an impact. The steeply downward sloping bands of di�erent shades
suggest that in terms of fitting the data if one increases (reduces) the assessed e�ectiveness of the lockdown the
assumed asymptomatic rate would be lower (higher). In other words, to fit the data reducing the estimate of the
share of the asymptomatic (πa ) can be partially o�set by raising the assumed e�ectiveness of the lockdown
(reducing βL).

Figure 2. Results from the free parameter optimisation of the model with γ = 0.109. a: UK new case data from figure 1 given
as a proportion of total population (blue) andmodel simulation for yst that gives the best fit to the UK data (green).

Figure 4 shows the model fit to the UK data when we set the half life of the virus at 8 days (γ =0.0833). The
best fit here was with a value of R0 of 2.95 and βL and πa of 0.1598 and 0.996 respectively. Once again the best
fit value of πa is very high and once again it implies that approximately 45% of the UK population may have
been infected by late April. Figure 5 shows the parameter combinations that have a goodness of fit within 10%
of the best pair of values; once again these are bunched fairly closely around the best fit values with all such
pairs generating a value of πa close to 0.996. The fit of the model deteriorates so sharply when we set the half
life of the virus to be only 4 days that we do not show those results.

The parameter space in figure 5 shows the best fit parameters (red dot) and also the parameter combinations
that generate a root mean squared error within 10% of the best value. This is illustrative of the degree of uncer-
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Figure 3. RMS di�erence between UK new case data and ys t for all combinations of πa and βL for simulations with γ = 0.109.
The combination that gives the lowest RMS value (the best fit) is shown as a red dot. The combinations that give and RMS
value within 10% of the minimum RMS are shown in green.

Figure 4. Like figure 2 with γ = 0.0833

tainty around the best fit values of the two parameters. However, it is di�icult to construct precise confidence
regions around the best-fit parameter estimates. Under restrictive assumptions, the parameter space within
which the standard error of the model is within 10% of the best fit would very likely contain the true parameter
values. Standard tests based on the assumption of independent and normally distributed residuals between
data and the fit of the model would imply a small chance of parameters lying outside this area. The statistic
T (l n ( RSSrRSS∗ )), where RSS

∗ is the unrestrictedminimum residual sum of squares, RSSr is the sum of squared
residuals at some other restricted value of the parameters andT is the sample size (in this case number of
days we run the simulation over) would follow a χ2 distribution if all the ideal assumptions for OLS estimation
were satisfied. At aT value of 90 the 1% confidence region for that statistic with two estimated parameters
would include only values where the standard error of the model were within around 5.2% of the best value.
An F version of this test, based on the statistic [ (RSSr−RSS∗)k ]/[ RSS∗T −k ] and whereT = 90, k = 2would imply a
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Figure 5. Like figure 3 with γ = 0.0833

1% confidence region including parameters generating a standard error nomore than around 5.6% above the
best fit value. However, the conditions for these parametric methods to be a reliable guide to the uncertainty
over parameter estimates do not hold: the model is highly non-linear and the values of state variable used to
generate predictions of yst - that is It−1 and St−1 - are themselves generated using the estimated parameters.
To overcome this, we use a simple bootstrap technique to judge confidence intervals for the parameters. We
take the set ofT squared residuals between data and themodel using the best fit parameter values and also
construct T squared residuals at some other point in the parameter space we wish to compare to. We construct
a pooled square residual dataset by combining the two sets (giving 2T values), fromwhich we randomly draw
2 samples (without replacement) each of size T. For each pair of samples we calculate the mean di�erence
between them. We repeat this 10,000 times and construct the frequency distribution of outcomes. We then
calculate where the actual mean di�erence in squared residuals between the two parameter estimates is in this
sample distribution. An example of such a distribution is shown in figure 6. It is produced by taking the point
in figure 5 which gives the best fit and comparing the residuals to another point in parameter space defined
by (pia = 0.9 and βL = 0.007). This value of βL is chosen as it minimises the RMS for πa = 0.9. The mean of
the distribution of constructed di�erences in sums of square residuals is very close to zero (its expected value)
and the actual di�erence in squared residuals based on the two sets of parameter estimates lies at around the
91st percentile of the distribution. We find this to be the case when the best fit parameters are compared to all
combinations of values when βL is lower than approximately 0.12 and pia is less than 0.9. This suggests that
these regions of parameter space can be rejected but only with moderate (90%) confidence.

While the parameter space that generates a standard error within 10% of the best fit value (green dots)
suggests that parameters significantly far from the red dot do significantly less well in accounting for the UK data
(conditional on the wide range of assumptions we have made), the interval at a less than 10% significance level
defined by our bootstrappingmethod is relatively wide and encompasses low values of πa . Using these intervals,
one could reject a value of πa below 0.9 at the 10% level, but not at higher levels. In short, one cannot be sure
that the main reason why test cases of those newly infected turned down was because a large fraction of the
population had already been infected (very high πa ) rather than a low value of βL (a very e�ective lockdown).

Nonetheless, as we describe in more detail below, we consistently find the best fit for the data (for both the
UK and other countries) is for a very high value of πa .
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Figure 6. Frequency distribution (produced using the bootstrapmethod) of squared residual di�erences between points
in parameter space defined by the best fit from figure 5 where pia = 0.996 and βL = 0.1598 and the point at πa = 0.9 and
βL = 0.07. The Green line represents the actual di�erence betweenmean squared residuals of the fits and lies at the 91st
percentile of the distribution.

5 Results for France, US, Italy, Spain and Sweden
We estimated the samemodel for other countries where up to the end of April 2020 testing had largely confined
to those with symptoms or those at high risk. Data for those testing positive comes from the Johns Hopkins data
bank. Dates at which measures to reduce the spread of the virus became severe (the lockdown date) were taken
from the Blavatnik Centre at Oxford university which has constructed an index of the severity of measures. We
choose the date at which that index rises most sharply to be our starting date for lockdownmeasures. The dates
used are outlined in table 1. For the US, the date is problematic because actions vary substantially across states.

Country Lockdown Date

France 16 March
Spain 10 March
Italy 23 February
Sweden 19 March (partial lockdown)
USA 16 Mar (localised lockdown)

Table 1. Lockdown dates for various countries used for simulations.

The estimated impact of themeasures (alongwith the asymptomatic) rate is freely estimated for each country.
Since lockdown measures di�er significantly across countries (mild in Sweden; severe in France) we expect
estimates of the di�erence between βL and β0 could be substantial across countries. We would expect smaller
di�erences in the estimated asymptomatic rate, πa

Figures 7-11 show the fit of the model for each country. The most striking result is that the values of πa that
best fit the national data on positive tests for the virus are consistently at very high levels - generally around
0.995 (though lower for the USA). As with the UK results, taken at face value this would mean that there are 200
or so people who have had the virus with few symptoms for every infected person who has had symptoms.

But what is equally striking, and much less reassuring, is that these best-fit estimates for πa are much higher
than those based on the rather limited test results from countries that went beyond testing only those with
symptoms and which are therefore closer to being based on a random sample of the population. Ultimately
tests based on a large and random sample of the population is the only way to be confident about how far the
virus has spread. Evidence based on test results from what is closer to a random sample (even if the sample
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Figure 7. Model simulation for ys t that gives the best fit to data from France. R0 = 2.95 and γ = 0.083

Figure 8. Model simulation for ys t that gives the best fit to data from USA. R0 = 3.3 and γ = 0.083

size is not large and the sample not truly representative of the whole population) should be given great weight.
Those results suggest a value of πa very much lower than the values we find to fit the data on tests whenmost of
those tested had symptoms. Some cross country studies based on deaths associated with the virus (for example
Flaxman et al. 2020) also suggest a significantly lower value of πa than we find best fits the data on test results.

6 Interpretation, caveats and implications
If it is really the case that those who have been infected but are asymptomatic may be 200 times as numerous
as those who develop symptoms (and who are therefore more at risk) then based on the numbers who have
tested positive with symptoms it would seem likely that a high proportion of the UK population (60% or so by
end April 2020) had already been infected and that a substantial proportion then had some sort of immunity.
This would be very good news. It would mean that the rate of new infections would be likely to die down, even if
there was some rise in β as severe lockdown conditions were to be eased. Figure 12 illustrates by showing how
the number of UK new daily symptomatic infections (ys t ) would evolve based on the model parameters (using
R0=2.95; γ =0.0833 which generates best fit values for πa and βL of 0.996 and 0.1598 respectively) and assuming
that the infection rate moves half way back to β0 from early May to simulate some partial relaxation of lockdown
measures.
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Figure 9. Model simulation for ys t that gives the best fit to data from Italy. R0 = 3.9 and γ = 0.083

Figure 10. Model simulation for ys t that gives the best fit to data from Spain. R0 = 3.9 and γ = 0.083

The reason that this projection shows such a decline in new cases is that the R number implied by themodel
would be comfortably under 1 by the end of April 2020 if the proportion of the population that is susceptible had
already dipped down by as much as is implied by as high a value of πa of 0.996. The final figure illustrates the
trajectory of R implied by the model parameters πa and βL that best fit the UK data.

But why should results of the SIR model designed to fit the UK test data (and which also seem to best fit data
from Italy, Spain, France, Sweden and the US) suggest amuch higher rate of the spread of the virus than test data
from countries that have donemore widespread (closer to random) testing? One answer is purely mechanical: if
one wants to fit a model that tracks the data on positive tests it must be one where the number of infections
rises very fast early on (a relatively high R0 and β0). But the number of new infections amongst those tested
in the UK and other countries (a very high proportion of whom had symptoms) did turn around quite sharply
in April. There are two things in the model that between them can account for this turn: a big reduction in β
as a result of the lockdown and a large and rising population of people who had already been infected which
brings the susceptible population down fast as wemoved through April. The only way the latter e�ect could be
significant is if the population of those who have had the virus but had never been tested was very substantial.

Is it possible that we have made assumptions which force the model to explain muchmore of the slowdown
in new positive test cases by a fast rise in the immune population (which implies a very large group have had the
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Figure 11. Model simulation for ys t that gives the best fit to data from Sweden. R0 = 2.5 and γ = 0.083

Figure 12. Actual and predicted (yst ) new cases. The model is run with R0 = 2.95, γ = 0.0833 and an increase in beta on May
10th half way back to β0

virus with few symptoms) rather than attribute it to a very e�ective lockdown? One factor may be significant:
we have assumed a 14 day delay between the start of the lockdown and its beginning to a�ect the rate of
new positive tests for the virus. If that lag were much smaller, more of the turn around in new cases might be
attributed to the lockdown and correspondingly less to a rise in mass immunity. But in fact, when we halve the
lag between the start of the lockdown and its e�ect on β we still find that the value of πa that best fits the data
remains very close to 1.

There is, however, one assumption that does have a significant impact on the estimated asymptomatic rate.
This is the assumption that β is the same for both symptomatic and asymptomatic groups. If the rate at which
the asymptomatic infect people is significantly lower than for the symptomatic, the best way for our SIR model
to explain the UK data is to have a much lower number of asymptomatic (πa ). If the transmission rate of the
asymptomatic is one half that of the symptomatic, but the weighted average of the two keeps the overall β as it
was, πa falls to approximately 0.5. But, the fit of the model deteriorates and the RMS error is around 16% higher
than the lowest value obtained in simulations with identical transmission rates.

There is limited evidence that the transmission of the virus is weaker for those with few symptoms (Li et
al. 2020). But, it is clear that it matters for modelling the spread of the virus (Park et al. 2020). The influential
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Figure 13. Forward projection of R t which is defined as
βt St
γN . The model is run with R0 = 2.95, γ = 0.0833 and an increase in

beta on May 10th half way back to β0

Imperial College study (Ferguson et al. 2020) does assume a lower asymptomatic transmission rate (by 50%).
The analysis of Gupta and her team (Lourenço et al. 2020), designed to explain the early spread of the virus in
the UK, appears to assume a common transmission rate amongst the infected. That study suggested that the
asymptomatic were a very high proportion of the infected and that the virus had spread very widely by early
March. Our study suggests that estimates of the spread of the virus that best account for the data are sensitive
to whether the transmission rate is assumed to be the same for asymptomatic and symptomatic groups.

We have found that when trying tomatch data on the recorded cases of the virus ourmodel appears to favour
high values of πa (the asymptomatic proportion of the total infected people). This is a consistent finding across
a number of scenarios where we vary the mean transmission rate, the recovery rate and lockdownmeasures.
It is only when the transmission rate for the asymptomatic is much lower than for the symptomatic that the
best fitting estimate of πa is reduced. These two facts lead to two conclusions: First, that previous estimates
of πa near 0.9 (Li et al. 2020), or even higher, are consistent with versions of a simple SIR model designed to
track results of tests for the virus in the UK and other countries; but we do not make the stronger claim that the
evidence clearly proves such a high value. Second, that reliable modelling of the evolution of the spread of the
virus requires accurate measurement of transmission rates for symptomatic and asymptomatic groups and is
sensitive to whether these are di�erent.

Finally our results indicate that it is hard to be very confident about which of two quite di�erent factors is the
primary reason why a corner has been turned in the trajectory of new cases of positive tests for the virus: i. that
the lockdown is very e�ective; ii. that the infection has spread so far that new infections naturally slow down. In
all of the countries whose data we analysed, the best fit to that data favours the second explanation and that
there have been a very large number of asymptomatic infected for each infected person with symptoms. But in
no cases can the alternative hypothesis be rejected with very high (0.05 or 0.01) confidence. The data by no
means overwhelmingly reject the hypothesis of a value of πa lower by enough to mean that the main cause of
the slowdown (and then reversal) in the arrival of new positively tested cases of the virus were themeasures
taken to curb it. But there is another way of looking at the same results. This is that there is evidence that the
infection may have spread far enough to mean that the trajectory of falling new cases could be maintained with
some easing of restrictions.

Policy on how far to ease restrictions will inevitably have to bemade in a fog of considerable uncertainty.
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